👈فول فایل فور یو ff4u.ir 👉

مکان یابی بهینه چاه ها در یک مخزن مدل شده به روش Streamlines

ارتباط با ما

دانلود


مکان یابی بهینه چاه ها در یک مخزن مدل شده به روش Streamlines
 فهرست مطالب عنوان صفحه 1-1- اهمیت مسئله. 13
1-2- مروری بر خواص سنگ و سیال مخازن نفتی. 14
1-2-1- زمین شناسی نفت و چگونگی تشکیل مخازن هیدروکربنی.. 14
1-2-2- مهاجرت مواد نفتی از رسوبات سنگ مادر به درون سنگ مخزن 15
1-2-3- ویژگی های مخازن هیدروکربنی.. 15
1-2-4- اشباع.. 16
1-2-5- نفوذپذیری نسبی.. 16
1-2-6- تخلخل.. 17
1-2-7- ترشوندگی.. 18
1-2-8- فشار موئینگی.. 18
1-3- خواص سیال مخازن. 19
1-3-1- فشار مخزن.. 19
1-3-2- دمای مخزن.. 19
1-4- معادله دارسی. 19
1-5- سیالات موجود در مخزن. 20
1-5-1- آب مخزن.. 20
1-5-2- نفت مخزن.. 20
1-5-3- گاز مخزن.. 20
1-5-4- انرژی مخزن.. 21
1-6- برداشت نفت از مخازن. 21
1-6-1- رانش های طبیعی.. 21
1-6-2- رانش مصنوعی.. 21
1-6-3- بازیافت ثانوی.. 21
1-7- انواع چاه های نفت. 22
1-7-1- چاه های متداول.. 22
1-7-2- چاه های افقی.. 23
1-7-3- چاه های هوشمند.. 23
1-8- مروری بر رئوس مطالب پایان نامه. 23
فصل دوم: تعریف مسئله و مروری بر تاریخچه مکان یابی بهینه چاه ها
2-1- تعریف مسئله مکان یابی چاه های نفت. 26
2-2- مروری بر روش های بهینه سازی. 27
2-2-1- الگوریتم ژنتیک.. 28
2-2-1-1- عملگرهای الگوریتم ژنتیک.. 29
2-2-1-2- پارامترهای الگوریتم ژنتیک.. 33
2-2-2- الگوریتم PSO.. 35
2-2-3- الگوریتم Polytope. 39
2-2-4- الگوریتم Simplex. 41
2-2-5- الگوریتم Hook Jeeves. 42
2-2-6- الگوریتم شاخه و کران.. 44
2-3- تاریخچه مسئله مکان یابی بهینه چاه های نفت. 44
2-3-1- الگوریتم های بهینه سازی.. 45
2-3-2- روش های بهینه سازی آزاد از گرادیان.. 46
2-3-2-1- الگوریتم بهینه سازی تصادفی.. 46
2-3-2-2- روش های بهینه سازی قطعی.. 47
2-3-3- روش های بهینه سازی ترکیبی.. 47
2-3-4- الگوریتم های بهینه سازی مبتنی بر گرادیان.. 48
2-3-5- کاربرد پروکسی ها.. 51
2-3-6- بهینه سازی تحت قید.. 51
فصل سوم: توصیف معادلات حاکم بر مخزن، گسسته سازی و شبیه سازی
3-1- مقدمه. 54
3-2- معادلات مخزن. 54
3-3- گسسته سازی معادلات مخزن. 57
3-4- معادلات مخزن بر پایه Streamline. 59
3-4-1- مفاهیم و تعاریف اولیه Streamline ها.. 60
3-4-1-1- برخی از تعاریف Streamline. 61
3-4-1-2- Potential Flow.. 62
3-4-2- مقدمه ای بر روش Streamline در شبیه سازی مخازن.. 63
3-4-3- تاریخچه مدل سازی مخزن بر پایه Streamline. 64
3-4-4- روش Streamline. 65
3-4-5- مزایا و معایب Streamline ها در شبیه سازی مخزن.. 66
3-4-6- مدل ریاضی مخزن بر پایه Streamline. 68
3-4-6-1- معادله فشار و اشباع در روش IMPES. 68
3-4-6-2- پاسخ معادله فشار.. 70
3-4-6-3- توصیف تحلیلی مسیر Streamline ها.. 70
3-4-6-4- زمان پرواز.. 71
3-4-6-5- تبدیل مختصات در راستای Streamline ها.. 72
3-5- شبیه سازهای مخازن. 72
3-5-1- نرم افزار Eclipse. 73
3-6- نحوه پیاده سازی مسئله مکان یابی چاه ها و ایجاد ارتباط میان نرم افزارهای Eclipse و Matlab. 75
3-7- نتیجه گیری. 77
فصل چهارم: شبیه سازی مخزن و اعمال الگوریتم های بهینه سازی
4-1- مقدمه. 80
4-2- شبیه سازی مخزن مدل شده به روش FD و SL. 80
4-2-1- مخزن شماره 1. 81
4-2-1-1- سناریو:.. 81
4-2-1-2- نتیجه گیری.. 86
4-2-2- مخزن شماره 2. 86
4-3- معرفی تابع هدف مسئله مکان یابی چاه ها. 86
4-4- به کارگیری الگوریتم بهینه سازی جهت مسئله مکان یابی چاه ها 87
4-4-1- الگوریتم ژنتیک.. 87
4-4-1-1- جمعیت اولیه.. 88
4-4-1-2- انتخاب طبیعی.. 89
4-4-1-3- انتخاب.. 89
4-4-1-4- جهش.. 89
4-4-1-5- همگرایی.. 90
4-4-1-6- نتایج.. 90
4-4-2- الگوریتم PSO.. 91
4-4-2-1- نتایج.. 91
4-4-3- الگوریتم ILC.. 92
4-3-3-1- الگوریتم ILC نوع P. 93
4-3-3-2- به کار گیری کنترلر ILC در مسئله مکان یابی چاه ها 93
4-3-3-3- نتایج شبیه سازی.. 94
4-4-4- الگوریتم FDG.. 97
4-4-4-1- اعمال الگوریتم در مسئله مکان یابی.. 97
4-4-4-2- الگوریتم تندترین سقوط.. 98
4-4-4-3- شبیه سازی و نتایج.. 99
4-5- نتیجه گیری. 100
فصل پنجم: به کارگیری روش بهینه سازی ترکیبی در مسئله مکان یابی
5-1- مقدمه. 102
5-2- درون یاب خطی وزن دار:. 102
5-3- تعریف تغییرات فاصله. 103
5-4- Kriging. 105
5-4-1- انواع مختلف روش Kriging. 106
5-5- پیاده سازی روش Kriging بر روی یک مثال نمونه. 107
5-5-1- مثال.. 109
5-6- ترکیب الگوریتم ژنتیک و Kriging جهت مسئله مکان یابی چاه ها 109
5-6-1- گام های ترکیب الگوریتم ژنتیک و Kriging. 110
5-6-2- شبیه سازی و نتایج.. 112
5-7- ترکیب الگوریتم FDG و تخمین گر Kriging. 112
5-7-1- گام های ترکیب الگوریتم FDG و Kriging. 113
5-7-2- شبیه سازی و نتایج.. 114
5-8- نتیجه گیری. 116
فصل ششم: به کارگیری اطلاعات مدلسازی مخزن بر پایه SL در مسئله مکان یابی چاه ها
6-1- مقدمه. 118
6-2- معرفی اطلاعات سودمند حاصل از مدل مخزن بر پایه SL 118
6-2-1- ضرایب اختصاص.. 119
6-2-1-1- شبیه سازی.. 120
6-2-2- بازده تزریق کننده ها.. 121
6-2-3- زمان پرواز.. 122
6-3- به کارگیری اطلاعات SL ها در مسئله مکان یابی. 122
6-4- ترکیب بازدهی چاه تزریق با الگوریتم ژنتیک جهت مکان یابی چاه تزریق. 124
6-5- نتایج و شبیه سازی. 125
6-5-1- مخزن همگن.. 125
6-5-2- مخزن ناهمگن.. 127
6-6- نتیجه گیری. 129
فصل هفتم: طراحی کنترل کننده فازی به منظور بهینه سازی یک تابع هدف مشخص در مخازن نفتی
7-1- مقدمه. 131
7-2- تاريخچه کنترل فازی. 131
7-2-1- مبانی سیستمهای فازی.. 132
7-2-2- پایگاه قواعد.. 134
7-2-3- موتور استنتاج فازی.. 134
7-2-4- انواع فازی ساز.. 135
7-2-5- انواع غیر فازی سازها:136
7-3- به کارگیری کنترلر فازی در مسئله مکان یابی چاه ها 137
7-3-1- تابع هدف مسئله.. 138
7-3-2- طراحی کنترلر فازی و قواعد فازی.. 138
7-3-2-1- تعریف قواعد فازی.. 139
7-3-2-2- نحوه اعمال کنترلر فازی.. 141
7-4- شبیه سازی و نتایج. 143
7-4-1- مخزن 1. 143
7-4-2- مخزن 2. 146
7-4-3- مخزن 3. 147
7-4-4- مخزن 4. 149
7-5- نتیجه گیری. 151
فصل هشتم: نتیجه گیری و پیشنهادات
8-1- نتیجه گیری. 153
8-2- پیشنهادات. 154
فهرست مراجع. 155
فهرست جدول‌ها
 عنوان صفحه
جدول 4-1: ویژگی مخازن شبیه سازی شده. 80
جدول 4-2: پارامترهای مخزن شماره 1. 81
جدول 4-3: نتایج حاصل از شبیه سازی. 85
جدول 4-4: نتایج شبیه سازی مخزن 2. 86
جدول 4-6: پارامترهای الگوریتم ژنتیک. 90
جدول 4-7: نتایج شبیه سازی الگوریتم ژنتیک. 91
جدول 4-8: زمان شبیه سازی کنترلر ILC.. 97
جدول 4-9: مقایسه مکان یابی FDG و ژنتیک. 99
جدول 5-1: مقایسه روش GA و HGA.. 112
جدول 5-2: مقایسه FDG و روش ترکیبی FDG+Kriging. 115
جدول 5-3: مقایسه FDG و روش ترکیبی FDG+Kriging. 116
جدول 6-1: ضرایب اختصاص برای مخزن همگن با 2چاه تزریق و 4چاه تولید 121
جدول 6-2: بازدهی تزریق کننده ها در مخزن بخش 6-2-1-1 123
جدول 6-3: مقایسه روش پیشنهادی ترکیبی با روش ژنتیک معمولی از لحاظ تعداد شبیه سازی. 126
جدول 6-4: پارامترهای مخزن ناهمگن. 127
جدول 6-5: مقایسه روش پیشنهادی ترکیبی با روش ژنتیک معمولی از لحاظ تعداد شبیه سازی. 128
جدول 7-1: مقایسه غیر فازی سازها. 137
جدول 7-2: قواعد فازی. 140
جدول 7-3: مشخصات مخزن. 143
 فهرست شکل ها
عنوان صفحه
شکل 1-1: میزان تقاضا برای نفت. 13
شکل 2-1: نمایش متغیرها در دو فضای ژنوتیپ و فنوتیپ. 29
شکل 2-2: تقاطع تک نقطه ای. 32
شکل 2-3: تقاطع دو نقطه ای. 32
شکل 2-4: تقاطع یکنواخت. 32
شکل 2-5: اپراتور جهش. 33
شکل 2-6: فلوچارت الگوریتم ژنتیک. 35
شکل 2-7: انتخاب جمعیت اولیه از اعضا. 36
شکل 2-8: ارزیابی تابع هدف. 37
شکل 2-9: انتخاب بهترین موقعیت ذرات. 37
شکل 2-10: به روز رسانی سرعت ذرات. 38
شکل 2-11: چگونگی به روز کردن موقعیت ذره در فضای جستجوی دو بعدی 38
شکل 2-12: فلوچارت الگوریتم PSO.. 39
شکل 2-13: الگوریتم Polytope. 41
شکل 2-14: نحوه جستجوی الگوریتم HJ در فضای جستجوی دو بعدی 42
شکل 3-1: گسسته سازی گریدها در راستای محور افقی. 58
شکل 3-2 مجموعه ای از Streamline ها. 60
شکل 3-3: رسم میدان برای . SL ، از شروع شده و تا نقطه دنبال شده است.. 61
شکل 3-4: مسیر SL ها. 70
شکل 3-5: شمای کلی فایل های ورودی وخروجی FrontSim.. 75
شکل 3-6: نحوه ارتباط دو نرم افزار. 77
شکل4- 1: اشباع نفت در اولین بازه زمانی. 82
شکل4- 2: اشباع نفت در آخرین بازه زمانی. 83
شکل4- 3: منحنی FOPT بر حسب زمان شبیه سازی. 83
شکل4- 4: منحنی FWCT بر حسب زمان شبیه سازی. 84
شکل4- 5: اشباع نفت در آخرین بازه زمانی. 85
شکل4- 6: اشباع نفت در اولین بازه زمانی برای مخزن 2. 85
شکل 4-7: منحنی NPV بر حسب مکان های مختلف چاه تزریق. 88
شکل 4-8: مقایسه دو روش بهینه سازی PSO و ژنتیک. 92
شکل 4-9: کنترلر ILC.. 93
شکل 4-10: بلوک دیاگرام مسئله مکان یابی چاه به عنوان مسئله کنترلی 94
شکل 4-11: نتایج خروجی کنترلر در تکرار های مختلف (مخزن مدل شده به روش SL). 96
شکل 4-12: نتایج خروجی کنترلر در تکرار های مختلف (مخزن مدل شده به روش FD). 97
شکل 4-13: نحوه پیاده سازی تکنیک LGR در یک مخزن. 99
شکل 4-14: تکرارهای مختلف الگوریتم جهت رسیدن به نقطه بهینه (شروع قرمز و بهینه آبی). 100
شکل 5-1: منحنی بر حسب . 105
شکل 5-2: فضای دو بعدی که داده ها به طور نامنظم پراکنده شده اند (سیاه رنگ) و نقطه ای که قرار است تخمین زده شود. (سفید رنگ) 108
شکل 5-3: تخمین یک تابع دو بعدی نمونه توسط روش Kriging. 109
شکل 5-4: فلوچارت الگوریتم ترکیبی ژنتیک و Kriging. 111
شکل 5-5: فلوچارت الگوریتم ترکیبی FDG وKriging. 113
شکل 5-6: مکان یابی بهینه چاه تزریق به کمک روش ترکیبی FDG و Kriging. 114
شکل 5-7: مکان یابی بهینه دو چاه تزریق به کمک روش ترکیبی FDG و Kriging. 115
شکل 6-1: ضرایب اختصاص بین یک تولید کننده و یک تزریق کننده به همراه یک آبده. 120
شکل 6-2: مخزن همگن مدل شده برمبنای SL. 121
شکل 6-3: فلوچارت الگوریتم ترکیبی ژنتیک و میزان بازدهی چاه ها 125
شکل 6-4: مقایسه روش پیشنهادی ترکیبی با روش ژنتیک معمولی 126
شکل 6-5: مقایسه روش پیشنهادی ترکیبی با روش ژنتیک معمولی 128
شکل 6-6: محل نقاط بهینه چاه های تزریق کننده. 129
شکل 7-1: ساختار اصلی سیستم های فازی خالص. 133
شکل 7-2: ساختار اصلی سیستم های فازی با فازی ساز و غیرفازی ساز 134
شکل 7-3: بلوک دیاگرام کنترلر فازی پیشنهادی. 138
شکل 7-4: جهت دور شدن چاه. 141
شکل 7-5: تابع عضویت برای . 142
شکل 7-6: تابع عضویت برای 142
شکل 7-7: تابع عضویت برای جهت خروجی. 143
شکل 7-8: منحنی FOPT برای مخزن1. 144
شکل 7-9: منحنی FWPT برای مخزن1. 145
شکل 7-10: جهت حرکت الگوریتم به ازای شرایط اولیه مختلف 145
شکل 7-11: نفوذپذیری در جهت x. 146
شکل 7-12: منحنی FOPT مخزن 2. 147
شکل 7-13: منحنی FWPT برای مخزن 2. 147
شکل 7-14: موقعیت چاه های مخزن شماره 3. 148
شکل 7-15: منحنی FWPT برای مخزن 3. 148
شکل 7-16: منحنی FOPT برای مخزن 3. 149
شکل 7-17: منحنی FOPT برای مخزن 4. 149
شکل 7-18: منحنی FWPT برای مخزن 4. 150
شکل 7-19: محل مکان بهینه چاه تزریق در مخزن 4. 150
مقدمه‌
 1-1- اهمیت مسئله
تامین انرژی مورد نیاز انسان ها یکی از مسائل مهمی است که با افزایش جمعیت جهان، روز به روز بر اهمیت آن افزوده می شود. منابع تامین انرژی متعددند و می توان آن را به دو دسته کلی منابع تجدید پذیر نظیر باد، آب، انرژی خورشیدی و ... و منابع تجدید ناپذیر شامل زغال سنگ، گاز طبیعی و نفت تقسیم بندی کرد. اما علی رغم آن که نقش منابع تجدید پذیر روز به روز در حال پر رنگ تر شدن است، سوخت های فسیلی از جمله نفت همچنان یکی از پرکاربردترین منابع تامین انرژی می باشد که با افزایش برداشت ها رو به اتمام است. به علاوه اکثر میادین نفتی موجود در جهان در مرحله بلوغ بازدهی خود هستند و همچنین تعداد اکتشافات بزرگ مخازن نفت رو به کاهش است.با توجه به حجم تقاضا و محدودیت برداشت ها، توجه هر چه بیشتر به برداشت بهینه، از منابع موجود و کاهش هزینه های عملیاتی و اقتصادی الزامی است. در نتیجه این موضوع باعث شکل گیری مسئله مدیریت مخازن می شود. شکل 1-1 بیانگر افزایش میزان تقاضای جهانی برای نفت در طی سال های اخیر می باشد.
شکل 1-1: میزان تقاضا برای نفت [1]
با استفاده از روش های سنتی مدیریت مخزن، تنها در حدود 10 درصد نفت موجود در مخزن در بازیافت اولیه تولید می شود ( طی رانش نفت به صورت طبیعی ). در بازیافت ثانویه ( تزریق آب یا گاز ) میزان تولید نفت به 20 تا 40 درصد می رسد (DOE 2008). با افزایش قیمت نفت ، بهبود در هر روش مدیریت مخازن به طوری که بتواند میزان تولید و سود را افزایش دهد، مورد توجه است. در نتیجه یکی از موضوعات کلیدی که در مدیریت مخازن مطرح می شود، مکان یابی بهینه، یک یا چند چاه در یک بازه زمانی مشخص به منظور حداکثر کردن میزان تولید و سود حاصل از برداشت با در نظر گرفتن محدودیت های فیزیکی و اقتصادی مسئله می باشد.
در مورد مسئله مکان یابی، مدل سازی و شبیه سازی مخزن از گام های مهم است. هر اندازه مدل مخزن به مدل واقعی نزدیک تر باشد، مکان یابی بهینه مخزن، از دقت بالاتری برخوردار خواهد شد. در اکثر روش های پیشنهادی، مدل سازی مخزن در محورهای مختصات دکارتی، منجر به مدل پیچیده تری می شود. در این پژوهش سعی بر آن است که با ارائه مدل ساده تری برای مخزن بر اساس Streamline ها و بهره جستن از طبیعت حاکم بر حرکت سیال در مخزن، به روندی موثرتر و ساده تر جهت مسئله مکان یابی بهینه چاه ها دست یافت . سرعت و کارایی روش Streamline ، این روش را به یکی از ابزارهای قدرتمند جهت حل مسائل پیچیده بهینه سازی

👇 تصادفی👇

دانلود لایه shapefile حوضه آبخیز هامون جازموریانریاضی هشتم - 150 نمونه سوال امتحانی فصل چهارم ریاضی هشتم - جبر و معادلهنقش حياتي استانداردها در محيطهاي آموزشهاي الكترونيكيیک قرن در تاریخ و افسانهنمونه سوالات کارشناسی ارشد پیام نور رشته زمین شناسی-چینه شناسی و فسیل شناسی- بیوزوناسیون و مدلهای بیوستراتیگرافی کد درس: 1116169-1116223پایان نامه مقایسه درمان نوروفیدبک و داروئی در بیماران وسواس فکری و عملیتوسعه یک برنامه برای مدیریت و برنامه ریزی طراحی فضای سبز در اطراف سفارت ✅فایل های دیگر✅

#️⃣ برچسب های فایل مکان یابی بهینه چاه ها در یک مخزن مدل شده به روش Streamlines

مکان یابی بهینه چاه ها در یک مخزن مدل شده به روش Streamlines

دانلود مکان یابی بهینه چاه ها در یک مخزن مدل شده به روش Streamlines

خرید اینترنتی مکان یابی بهینه چاه ها در یک مخزن مدل شده به روش Streamlines

👇🏞 تصاویر 🏞