👈فول فایل فور یو ff4u.ir 👉

تحقیق تجربی پارامتر های موثر بر روی پیل سوختی میکروبی تک محفظه ای با ساختار حلقوی با استفاده از پساب صنایع شکلات سازی

ارتباط با ما

دانلود


تحقیق تجربی پارامتر های موثر بر روی پیل سوختی میکروبی تک محفظه ای با ساختار حلقوی با استفاده از پساب صنایع شکلات سازی
فهرست مطالب
عنوان
فصل اول: مقدمه
پیشگفتار.. خ‌
1- 1 افزایش جمعیت و نیاز به انرژی.. 1
1- 2 سوخت های فسیلی و چالش های کنونی.. 2
1-3 انرژی های تجدید پذیر.. 3
1- 4 تولید الکتریسیته بیولوژیکی با استفاده از فناوری های پیل سوختی میکروبی 3
1-5 تاریخچه پیل های سوختی میکروبی.. 4
1-6 کاربرد های پیل سوختی.. 7
1-6-1 تولید انرژی تجدید پذیر با استفاده از پیل سوختی میکروبی 7
1-6-2 استفاده از پیل سوختی میکروبی جهت تصفیه فاضلاب 8
1-6-3 فرایند پیل سوختی میکروبی برای تولید هیدروژن.. 9
1-6-4 بیوسنسور.. 9
1-7 انتقال الکترون به الکترود ها.. 9
1-7-1 مکانیزم انتقال الکترون.. 9
1-8 انواع پیل های سوختی میکروبی.. 12
1-9 پیل های سوختی میکروبی.. 13
1-9-1 مواد تشکیل دهنده الکترود آند.. 14
1-9-1-1 کربن ورقه ای، پارچه ای، فوم ها.. 15
1-9-1-2 میله ها، نمد ها، فوم ها، صفحات و تخته های گرافیتی 15
1-9-1-3 دانه های گرافیتی.. 17
1-9-1-4 رشته ها و برس های گرافیتی 17
1-9-2 مواد تشکیل دهنده الکترود کاتد.. 18
1-9-2-1 کاتد های کربنی با کاتالیست های پلاتینی.. 19
1-9-2-2 بایندر.. 19
1-9-2-3 لایه های نفوذ.. 20
1-9-2-4 پلاتین و فلزاتی با پوشش های پلاتینی.. 20
1-9-3 غشاء ها و جدا کننده ها.. 20
1-10 محاسبه ولتاژ.. 21
1-11 بیشینه ولتاژ براساس روابط ترمودینامیکی.. 22
1-11 محاسبه توان.. 23
1-12-1 نرمالیزه کردن توان خروجی پیل سوختی میکروبی تک محفظه‌ای‌23
1-12-1-1 توان خروجی نرمالایز شده به مساحت سطح آند.. 24
1-12-1-1 توان خروجی نرمالایز شده به مساحت سطح کاتد 24
1-12-1-2 توان خروجی نرمالایز شده با حجم خالی بستر پیل 24
1-13 منحنی های پلاریزاسیون و چگالی توان.. 25
1-14 عوامل تاثیر گذار بر روی ولتاژ پیل سوختی میکروبی 27
1-15 نکاتی مهم و کوتاه در مورد باکتریها و شرایط متابولیسم آنها 29
فصل دوم : مروری بر پژوهش های پیشین
پیشگفتار.. 32
2-1 پیکربندی.. 33
2-2 سیستم های پیل سوختی تک محفظه‌ای‌33
2-3 مروری بر الکترود های به کار گرفته شده در پیل سوختی میکروبی 36
2-4 مروری بر پژوهش های صورت گرفته در زمینه پساب های استفاده شده 39
2-4-1 استات.. 40
2-4-2 گلوکز.. 40
2-4-3 توده زیستی لیگنوسلولزی.. 41
2-4-4 پساب کارخانجات آبجو سازی.. 41
2-4-5 پساب خروجی از کارخانجات تولید نشاسته.. 42
2-4-6 شیرابه زباله.. 42
2-4-7........................................................................................... پساب ساختگی.. 43
فصل سوم : سامانه مورد آزمایش، مواد، روش‌ها و نحوه محاسبات
پیشگفتار.. 45
3-1 طراحی، ساخت و راه اندازی پیل سوختی بیولوژیکی.. 46
3-1-1 بدنه پیل سوختی میکروبی تک محفظه‌ای‌46
3-1-2 الکترود کاتد.. 49
3-1-3 الکترود آند.. 53
3-2 دستگاه های مورد استفاده.. 55
3-2-1 سیستم ثبت ولتاژ در طول زمان.. 55
3-2-2 دستگاه اسپکتروفتومتر.. 55
3-2-3 دستگاه اندازه گیری pH.. 56
3-2-4 دستگاه آون.. 56
3-2-5 دستگاه سانتریفیوژ.. 56
3-2-6 دستگاه انکوباتور.. 57
3-2-7 ترازو.. 57
3-2-8 میکروسکوپ الکترونی پویشی.. 57
3-2-9 دستگاه اولتراسونیک.. 59
3-2-10 دستگاه کدورت سنج.. 59
3-3 آزمایشات انجام شده.. 59
3-3-1 آزمایش COD.. 60
3-3-1-1 محلول اسید سولفوریک.. 60
3-3-1-2 محلول هاضم.. 60
3-3-1-3 منحني استاندارد براي سنجشCOD.. 61
3-3-2 اندازهگیريغلظتگلوکز.. 61
3-3-3 اندازه گیری کل مواد جامد (TS)63
3-3-4 اندازه گیری کل جامدات معلق (TSS)63
3-3-5 اندازه گیری کدورت.. 64
3-3-6 اندازه گیری دما.. 64
3-3-7 اندازه گیری pH.. 64
3-3-8 غنی سازی میکروبی پیل سوختی و سازگاری میکرو ارگانیسیم ها با پساب 65
3-4 نحوه انجام محاسبات.. 69
3-4-1 اندازه گیری جریان و توان.. 69
3-4-2 نمودار پلاریزاسیون، چگالی توان و اندازه گیری مقاومت درونی 69
3-4-3 محاسبه بازدهی عملیاتی پیل سوختی میکروبی.. 70
فصل چهارم: بحث و نتایج
4 پیشگفتار.. 72
4-1 اندازه گیری ولتاژ مدار باز.. 73
4-2 تاثیر مقاومت خارجی بر عملکرد پیل سوختی میکروبی تک محفظه‌ای‌77
4-2-1 اعمال مقاومت های خارجی پایین‌تر ‌و مقایسه عملکرد سیستم 80
4-2-2 اعمال مقاومت خارجی 100 و 50 اهم.. 84
4-2-3 نمودار پلاریزاسیون و چگالی توان.. 88
4-2-4 بررسی کاهش کدورت پساب.. 91
4-2-5 بررسی کاهش اکسیژن خواهی شیمیایی.. 92
4-3 بررسی اثر دما بر فعالیت پیل سوختی میکروبی، جریان و چگالی توان 93
4-4 بررسی اثر pH بر عملکرد پیل سوختی میکروبی.. 95
4-5 بررسی تأثیر غلظت پساب بر عملکرد سامانه.. 96
4-6 منحنیمصرف قند.. 99
4-7 محاسبه بازدهی عملیاتی پیل سوختی میکروبی تک محفظه ای 99
4-7-1بازدهی پتانسیل (PE).. 99
4-7-2............................................................................ بازده کلومبیک (CE).. 100
4-7-3 بازدهی تبدیل انرژی (ECE).. 102
4-8 مقایسه عملکرد پیل سوختی میکروبی.. 102
4-9 ریخت شناسی زیست لایه تشکیل شده بر سطح الکترود آند 102
فصل پنجم: نتیجه گیری و پیشنهادات
5-1 نتیجه گیری.. 104
5-2 پیشنهادات.. 107
  فهرست جدول ها
جدول ‏2‑1مزایا و معایب الکترودهای بر پایه کربن... 37
جدول ‏2‑2پژوهش‌های انجام شده با الکترودهای گوناگون آند بر پایه کربن و به کارگیری منبع تلقیح‌های متفاوت.38
جدول ‏2‑3پژوهش‌های صورت گرفته بر روی پیل تک محفظه‌ای‌ و محاسبه توان خروجی نرمالایز شده با کاتد.. 39
جدول ‏2‑4سوبستراهای متفاوت به کار رفته در پیل‌های تک محفظه‌ای‌ و بیشترین جریان تولید شده... 44
جدول ‏3‑1مشخصات پساب ورودی به پیل سوختی میکروبی... 64
جدول ‏3‑2مقادیر منبع مواد معدنی و ویتامینه برای تغذیه باکتری‌ها. 67
جدول ‏4‑1 مقایسه میزان مصرف سوبسترا در مقاومت‌های 300 و 500 اهم. 81
جدول ‏4‑2 مقایسه مدت زمان سه فاز افزایشی، ایستا، کاهشی در مقاومت‌های 500 و 300 اهم... 82
جدول ‏4‑3 تغييرات ولتاژ، جريان و توان بر حسب تغييرات مقاومت در پیل‌ با فاصله الکترودی 3/1 سانتی‌متر... 85
جدول ‏4‑4 تغييرات ولتاژ، جريان و توان بر حسب تغييرات مقاومت در پیل‌ با فاصله الکترودی 7/0 سانتی‌متر... 87
 فهرست شکل ها
شکل ‏1‑1 تعداد مقالات استناد شده در زمینه‌ی پیل سوختی و توزیع کشور‌ها 5
شکل ‏1‑2 تعدادارجاعات در مورد موضوع پیل‌های سوختی میکروبی در پایگاه Science 6
شکل ‏1‑3 اجزاي بنيادي يک پيل سوختي ميکروبي... 7
شکل ‏1‑4 روش های انتقال الکترون.11
شکل ‏1‑5 نانو سیم‌های تولید شده توسط شوانلا که بر روی یک الکترود در پیل سوختی میکروبی رشد نموده‌اند.. 12
شکل ‏1‑6 تصویر مواد کربنی بکار رفته در آندها.. 15
شکل ‏1‑7 تصاویر بعضی از مواد گرافیتی به کار رفته در آند پیل‌های میکروبی 16
شکل ‏1‑8 تصاویر دانه‌ها، برس‌های گرافیتی و فیبر گرافیتی بکار رفته در آند. 17
شکل ‏1‑9 کربن پارچه‌ای پیش و پس از پوشش دهی لایه کاتالیست و غشاء... 19
شکل ‏1‑10 غشاء نفیون.. 21
شکل ‏1‑11غشاء CEM... 21
شکل ‏1‑12 منحنی پلاریزاسیون و چگالی توان در پیل‌های سوختی میکروبی.25
شکل ‏2‑1 MFC با یک لایه نفوذ پذیر برای پروتون که پوشاننده سمت داخلی کاتد است... 33
شکل ‏2‑2 پیل سوختی مکعبی ساخته شده توسط لئو و لوگان.. 34
شکل ‏2‑3 پیل سوختی تک محفظه‌ای هوا کاتد طراحی شده توسط لئو و همکارانش 35
شکل ‏2‑4 شماتیکی از پیل سوختی میکروبی تک محفظه‌ای‌ از دو زاویه مختلف.35
شکل ‏2‑5اولین پیل سوختی میکروبی تک محفظه‌ای بزرگ مقیاس ساخته شده توسط لئو و همکاران... 36
شکل ‏3‑1 طرح جداره پیل سوختی میکروبی تک محفظه‌ای‌ روی پلکسی گلاس به ضخامت 3 سانتی‌متر... 46
شکل ‏3‑2 طرح درپوش بالایی پیل سوختی میکروبی تک محفظه‌ای‌47
شکل ‏3‑3 نگه دارنده کاتد که الکترود کاتدی روی آن قرار می‌گیرد و در مرکز سل نصب می‌شود... 48
شکل ‏3‑4 طرح کلی پیل سوختی میکروبی تک محفظه‌ای با آند حلزونی... 48
شکل ‏3‑5 ساختار پیشنهاد شده توسط چنگ و همکاران که محل نسبی لایه نفوذی و کاتالیست را نشان می‌دهد... 49
شکل ‏3‑6 قرار دادن مخلوط کربن- پلاتین، آب، ایزوپروپانول و نفیون داخل حمام اولتراسونیک... 52
شکل ‏3‑7 جوهر کاتالیست همگن شده بعد از حمام اولتراسونیک... 52
شکل ‏3‑8 نصب الکترود کربن پارچه‌ای بر روی نگه دارنده کاتد پیش از پوشش دهی با جوهر کاتالیست... 53
شکل ‏3‑9 توری استیل ضد زنگ در هندسه حلزونی... 54
شکل ‏3‑10 پوشش دهی استیل ضد زنگ با رنگ گرافیتیو پس از پیچیدن دور کاتد. 54
شکل ‏3‑11 سیستم ثبت ولتاژ استفاده شده در این پژوهش... 55
شکل ‏3‑12 ميکروسکوپ الکتروني مورد استفاده در این پژوهش... 58
شکل ‏3‑13 دستگاه لايه نشاني طلاي مورد استفاده در تحقيق حاضر... 58
شکل ‏3‑14 نمودار استاندارد براي اندازه‌گيري COD.. 61
شکل ‏3‑15منحنی استاندارد برای اندازه گیری گلوکز.. 62
شکل ‏3‑16 محلول‌های تغذیه مورد استفاده در این پژوهش... 66
شکل ‏3‑17 تزریق مواد مغذی به مخلوط لجن و سازگاری میکروارگانیسم‌ها با پساب. 68
شکل ‏4‑1 اندازه گیری اختلاف پتانسیل مدار باز پیل سوختی میکروبی اول با فاصله الکترودی 3/1 سانتی‌متر... 74
شکل ‏4‑2 اندازه گیری اختلاف پتانسیل مدار باز برای پیل دوم در سه فاصله الکترودی مختلف... 76
شکل ‏4‑3 اختلاف پتانسیل پیل تک محفظه‌ای با فاصله الکترودی 3/1 سانتی‌متر در مقامت 500 اهم.. 78
شکل ‏4‑4 (الف) نمودار توان، (ب) شدت جریان پیل با فاصله الکترودی 3/1 سانتی‌متر، در مقاومت 500 اهم... 79
شکل ‏4‑5 شدت جریان الکتریکی در مقاومت 500 و 300 اهم... 80
شکل ‏4‑6 چگالی توان در مقاومت 500 و 300 اهم... 81
شکل ‏4‑7 تغییرات اختلاف پتانسیل حاصل از تجزیه فورفورال در پیل سوختی میکروبی هوا- کاتد.. 83
شکل ‏4‑8 نمودار اختلاف پتانسیل به دست آمده توسط لو و همکاران... 83
شکل ‏4‑9 (الف) توان، (ب) شدت جریان در مقاومت الکتریکی 100 اهم... 84
شکل ‏4‑10 (الف) توان، (ب) شدت جریان در مقاومت الکتریکی 50 اهم... 84
شکل ‏4‑11 اختلاف پتانسیل پیل تک محفظه‌ای با فاصله الکترودی 7/0 سانتی‌متر در مقامت 1000 اهم... 86
شکل ‏4‑12 (الف) نمودار توان، (ب) شدت جریان پیل با فاصله الکترودی 7/0 سانتی‌متر در مقاومت 1000 اهم... 87
شکل ‏4‑13 نمودار پلاریزاسیون پیل سوختی میکروبی تک محفظه‌ای با فاصله الکترودی 3/1 سانتی‌متر... 88
شکل ‏4‑14 نمودار چگالی توان پیل سوختی میکروبی تک محفظه‌ای با فاصله الکترودی 3/1 سانتی‌متر... 89
شکل ‏4‑15 نمودار پلاریزاسیون پیل سوختی میکروبی تک محفظه‌ای با فاصله الکترودی بهینه 7/0 سانتی‌متر ... 90
شکل ‏4‑16 نمودار چگالی توان پیل سوختی میکروبی تک محفظه‌ای با فاصله الکترودی بهینه 7/0 سانتی‌متر... 91
شکل ‏4‑17 کاهش کدورت پساب صنایع شکلات سازی با استفاده از پیل سوختی میکروبی تک محفظه‌ای‌... 92
شکل ‏4‑18 کاهش اکسیژن‌خواهی شیمیایی بر حسب زمان در مقاومت 100 اهم... 93
شکل ‏4‑19 نمودار تغییرات جریان پیل سوختی میکروبی در دماهای متفاوت. 94
شکل ‏4‑20 نمودار چگالی توان پیل سوختی میکروبی در دماهای متفاوت... 94
شکل ‏4‑21بررسی تأثیرpH بر عملکرد پیل سوختی میکروبی در دمای 35 درجه سانتی‌گراد و مقاومت 100 اهم... 96
شکل ‏4‑22 تغییرات شدت جریان الکتریکی بر حسب زمان در مقاومت 100 اهم برای دو غلظت متفاوت از پساب ورودی... 97
شکل ‏4‑23 تغییرات چگالی توان بر حسب زمان در مقاومت 100 اهم برای دو غلظت متفاوت از پساب ورودی... 97
شکل ‏4‑24 تغییرات شدت جریان الکتریکی در دو چرخه هوراک با دو غلظت متفاوت از در مقاومت 100 اهم... 98
شکل ‏4‑25 منحنی مصرف گلوکز توسط میکروارگانیسم‌ها بر حسب زمان... 99
شکل ‏4‑26 تغییرات شدت جریان در مقاومت 100 اهم برای پیل سوختی میکروبی با فاصله الکترودی 7/0 سانتی‌متر... 100
شکل ‏4‑27 محاسبه انتگرال شدت جریان در زمان با استفاده از نرم افزار Origin در 96 ساعت... 101
شکل ‏4‑28 تصاویر میکروسکوپ الکترونی پویشی از آند حلزونی شکل... 103
 فصل اول
مقدمه
  پیشگفتار
افزایش مصرف جهانی انرژی و مسأله گرم شدن کره زمین، بکارگیری انرژی‌های نو و تجدید‌پذیر را اجتنابناپذیر ساخته است. پیل‌های سوختی میکروبی[1]به دلایلی مانند مواد اولیه ارزان و راندمان نسبتاً بالا از جذابیت‌های ویژه‌ای برخوردار هستند. در این فصل ابتدا در مورد چالش‌های انرژی و انرژی‌های تجدید پذیر مواردی بیان می‌شود و سپس فناوری پیل سوختی میکروبی به عنوان راهکاری برای مقابله با این چالش‌ها پیشنهاد می‌شود. در پایان نیز کاربردهای مهم پیل‌های سوختی میکروبی ارائه می‌گردد.
در حال حاضر، جمعیت کره زمین بیش از 6 میلیارد نفر است که تخمین زده می‌شود در سال 2050 میلادی این جمعیت به بیش از 4/9 میلیارد نفر برسد [1]. در سال‌های گذشته، سوخت‌های فسیلی موجب پیشرفت صنعت کشورهای پیشرفته و رشد اقتصادی آن‌ها گردید. پیش بینی می‌شود در سال‌های 2015 تا 2025، تقاضای تولید بیشتر، موجب خالی شدن بسیاری از مخازن و ذخیره‌های نفتی خواهد شد [2].براساس پیش بینی‌های صورت گرفته و با درنظرگرفتن رشد جمعیت و رشد اقتصادی، نیاز به انرژی در سال 2050 را 41 تراوات[2]برآورد کرده‌اند. این پیش بینی بر اساس مصرف انرژی فعلی است. با ملاحظه این روند، طبق یک پیش بینی منطقی، انرژی مورد انتظار برای سال 2050، 27 تراوات و برای سال 2100، 43 تراوات می‌باشد[1].
کاربرد سوخت‌های فسیلی به خصوص نفت و گاز در سال‌های اخیر شتاب زیادی به خود گرفته است. سوخت‌های فسیلی باعث رشد صنعتی و اقتصادی کشورها گردیده است، اما واضح است که نمی‌تواند به طور نامحدودی اقتصاد جهانی را حمایت نماید. مصرف چنین سوخت‌هایی از آنجایی که منجر به احتراق مستقیم آن‌ها می‌شود، مشکلات متعددی را برای بشریت به همراه آورده است، لازم به ذکر است بیش از 20% انرژی مورد نیاز به صورت الکتریسیته در نیروگاه‌ها تولید می‌شود. با توجه به اینکه بازده نیروگاه‌ها حدود 33% می‌باشد، بنابراین انرژی به کار رفته برای تولید چنین جریان الکتریسیته‌ای سه برابر میزان تولیدی است. مهم‌ترین مشکلی که آینده انسان‌ها را با خطر مواجه خواهد کرد، مشکل گرم شدن کره زمین می‌باشد که ناشی از پیدا شدن گازهای گلخانه‌ای است و این گازها خود از احتراق مستقیم سوخت‌های فسیلی حاصل می‌شوند. بعلاوه احتراق سوخت‌های فسیلی منجر به آلودگی‌های زیست محیطی نظیر آلودگی هوا، بارش باران‌های اسیدی و تاثیرات منفی آن بر کشتزارها، جنگل‌ها، مراتع و آب‌های سطحی و ابنیه تاریخی و غیره می‌شود. مشکل دیگر که به واسطه استفاده روز افزون این سوخت‌ها جامعه جهانی را تهدید می‌کند بحران انرژی است که تبعات ناشی از این بحران بسیار ناگوارتر خواهد بود و دیگر مسائل زیست محیطی مطرح نیست بلکه مشکلات سیاسی، اجتماعی و اقتصادی را منجر خواهد شد. هنگامی‌که امریکا با اولین بحران نفت خود در دهه هفتاد قرن بیستم مواجه شد، به دنبال یافتن راه حل‌هایی برای غلبه بر این مشکل بر آمد. از جمله این راه حل‌ها کشف ذخایر جدید نفت، افزایش بازده استخراج نفت از منابع موجود یا به کار بردن سایر سوخت‌های فسیلی مانند ماسه‌های قیری[3]می‌باشد.
راه حل دیگر استفاده از انرژی هسته‌ای است، اما آن هم محدودیت‌های خاص خود را دارا می‌باشد. محدود بودن ذخایر اورانیوم جهانی، مشکلات مربوط به مسائل زیست محیطی و سلامت انسان ناشی از استخراج اورانیوم از معادن و فقدان ایمنی کافی و یافتن راه حل طولانی مدت برای ذخیره پسماندهای هسته‌ای از جمله این محدودیت‌ها است.
انرژی خورشیدی یک راه حل طولانی مدت است، اما همه آن بستگی به نحوه استفاده از این انرژی دارد. خورشید همه روزه نمی‌تابد و همه تابش آن در همه جا یکسان نمی‌باشد. بنابراین پانل‌های خورشیدی می‌توانند به نیازمندی‌های الکتریسیته در روز کمک کنند. اما به عنوان بک منبع تأمین انرژی در طول شبانه روز بدون روش‌های کارامد ذخیره سازی انرژی، نمی‌توانند مفید باشند.
در مجموع همه این عوامل باعث شده تا دانشمندان به دنبال جایگزین‌های مناسبی برای تأمین انرژی باشند، لذا انرژی‌های تجدید پذیر به عنوان یکی از روش‌های کاهش این بحران مورد توجه قرار گرفته‌اند. تلاش‌های زیادی برای ایجاد روش‌های دیگر تولید انرژی الکتریکی انجام گرفته است. روش‌های جدید تولید انرژی الکتریکی از منابع تجدید پذیر بدون انتشار خالص دی اکسید کربن بسیار مورد توجه می‌باشند [3].
انرژی‌های تجدید پذیر اساساً با طبیعت سازگار بوده، آلودگی ندارند و چون تجدیدپذیرند پایانی برای آن ها وجود ندارد. از ویژگی‌های دیگر این منابع می‌توان به پراکندگی و گستردگی آن‌ها در تمام جهان، فناوری آسان و قیمت پایین اشاره کرد. انرژی‌های تجدید پذیر به شرح زیر دسته بندی می‌شوند [4].
پیل سوختی میکروبی فناوری نوینی است که جدیدترین روش‌های دستیابی به الکتریسیته و تولید بیو الکتریسیته را از زیست توده[4]با بکار بردن باکتری‌ها بیان می‌کند، به عبارتی دیگر پیل سوختی میکروبی نوعی فناوری است برای تبدیل انرژی ذخیره شده در پیوندهای شیمیایی موجود در ترکیبات آلی به انرژی الکتریکی از طریق واکنش‌های کاتالیزشده توسط میکروارگانیسم ها که در سال‌های اخیر در تحقیقات آکادمیک بسیار مورد توجه قرار گرفته است [5]. همان طور که می‌دانید مواد آلی سرشار از انرژی است و در یک پیل سوختی میکروبی، میکروارگانیسم‌ها[5] مواد آلی را تجزیه (اکسید) می‌کنند و در جریان این عمل الکترون آزاد می‌شود. الکترون آزاد شده از خلال مجموعه‌ای از آنزیم‌های تنفسی داخل سلول مهاجرت کرده و برای سلول انرژی در فرم ATP[6] (ترکیبی است حاوی سه مولکول اسید فسفریک و یک پیوند کم نیرو و دو پیوند پر نیرو) ایجاد می‌کند، سپس این الکترون‌های آزاد در ترمینال جذب الکترون[7]که با جذب الکترون‌ها کاهش می‌یابد، جمع آوری می‌شوند[6, 7].بسیاری از ترمینال‌های جذب الکترون مانند اکسیژن، نیترات، سولفات و سایرین می‌توانند به داخل سلول نفوذ کرده و الکترون را جذب نموده و با تولید محصولاتی مجدداً از سلول خارج شوند. بطور مثال اکسیژن می‌تواند در حضور پروتون و الکترون طی یک واکنش کاتالیستی به آب کاهیده شود.

👇 تصادفی👇

تحقیق: "آهن و فولاد"نمونه سوالات تخصصی رشته روانشناسی - روشهای تغییر و اصلاح رفتار کد درس: 1217053استراتژیهای چند محصولیدانلود کتاب طراحی و ساخت سیستم های هیدرولیک44 نمونه سوال ریاضی فصل سوم کتاب ریاضی دوم دبستانمقاله زبان تخصصی استفاده از تکنولوژی بیسیم به صورت امن386- استفاده از روش های گراف تئوریكی برای بهبود خوش وضعی ماتریس نرمی سازه در تحلیل بهینه سازه ایگزارش كارآموزي در اداره امور مالياتي ابهر390-روش سوراخ زنی برای تعویق جدا شدگی در تیرهای بتنی تقویت شده باFRP ✅فایل های دیگر✅

#️⃣ برچسب های فایل تحقیق تجربی پارامتر های موثر بر روی پیل سوختی میکروبی تک محفظه ای با ساختار حلقوی با استفاده از پساب صنایع شکلات سازی

تحقیق تجربی پارامتر های موثر بر روی پیل سوختی میکروبی تک محفظه ای با ساختار حلقوی با استفاده از پساب صنایع شکلات سازی

دانلود تحقیق تجربی پارامتر های موثر بر روی پیل سوختی میکروبی تک محفظه ای با ساختار حلقوی با استفاده از پساب صنایع شکلات سازی

خرید اینترنتی تحقیق تجربی پارامتر های موثر بر روی پیل سوختی میکروبی تک محفظه ای با ساختار حلقوی با استفاده از پساب صنایع شکلات سازی

👇🏞 تصاویر 🏞