👈فول فایل فور یو ff4u.ir 👉

بررسی عددی تأثیر ابعاد هندسی نازلهای تزریق جهت افزایش عملکرد سرمایشی دستگاه ورتکس تیوب word

ارتباط با ما

دانلود


بررسی عددی تأثیر ابعاد هندسی نازلهای تزریق جهت افزایش عملکرد سرمایشی دستگاه ورتکس تیوب word
کلمات کلیدی
ورتکس تيوب، نازل، جدایش دمایی، شبيه سازی عددی، محفظه چرخش ، جریان های برگشتی.
 فهرست مطالب
فصل اول: مقدمه
1-1 رانکيو-هيلش ورتکس تيوب 1
1-2 تحقیقات رانکیو 2
1-3 تحقیقات هیلش 3
1-4 ورتکس تیوب مخروطی یا واگرا 4
1-5 ساختار کلی دستگاه 5
1-6 مزایا و معایب ورتکس تیوب 6
1-6-1 مزیت­های عمده ورتکس تیوب 6
1-6-2 برخی معایب ورتکس تیوب 7
1-7 ورتکس تیوب­های تجاری 7
1-8 کاربردهای ورتکس تیوب 7
1-8-1 خنک کاری موضعی 7
1-8-2 گرمایش موضعی 8
1-8-3 خنک کننده هوای شخصی 9
1-8-4 کاربرد به عنوان یک سیستم جدا کننده رسوب9
1-8-5 کاربرد به عنوان یک سیستم پالاینده در صنایع نفت و گاز 9
1-8-6 کاربرد در جوشکاری اولتراسونیک 10
1-9 کارهای آزمایشگاهی 10
1-10 ساختار کلی پایان نامه 11
فصل دوم: مروری بر کارهای گذشته
2-1 تحقیقات آزمایشگاهی بر روی ورتکس تیوب 13
2-1-1 پارامترهای ترموفیزیکی 13
2-1-2 پارامترهای هندسی 14
2-2 تحقیقات تئوری بر روی ورتکس تیوب 15
2-2-1 مدل تراکم و انبساط آدیاباتیک 15
2-2-2 اثر اصطکاک و توربولانس 15
2-2-3 مدل جریان آکوستیک 16
2-2-4 مدل چرخش ثانویه 17
2-3 تحقیقات عددی بر روی ورتکس تیوب 19
2-3-1 محل نقاط سکونی طولی و شعاعی داخل ورتکس تیوب 19
2-4 بررسی نازل­های تزریق دستگاه 20
2-4-1 تحقیقات آزمایشگاهی بر روی نازل­های تزریق دستگاه ورتکس تیوب21
2-5-2 مطالعات عددی بر روی نازل­های تزریق دستگاه ورتکس تیوب 22
فصل سوم: تجزیه و تحلیل نظری ورتکس تیوب
3-1 بررسی ترمودینامیکی ورتکس تیوب 24
3-1-1 قانون اول ترمودینامیک 26
3-1-2 قانون دوم ترمودینامیک 26
3-2 مدل چرخش ثانویه آلبرن 29
3-2-1 مدل چرخش ثانویه آلبرن (مدل مبدل حرارتی)29
3-2-2 مدل اصلی چرخش ثانویه آلبرن 31
3-2-3 تفسیر مدل آلبرن 32
3-2-4 مدل آلبرن اصلاح شده 33
فصل چهارم: مدل عددی بررسی شده
4-1 شبیه سازی عددی ورتکس تیوب 38
4-1-1 معادلات حاکم 38
4-1-2 مدل­سازی توربولانس 39
4-2 توصیف هندسی ورتکس تیوب مدل شده 41
4-3 شرایط مرزی 42
4-3-1 ورودی (Inlet) 42
4-3-2 خروجی سرد (Cold Exit End) 43
4-3-3 خروجی گرم (Hot Exit End) 43
4-3-4 دیواره ورتکس تیوب (Wall) 43
4-4 اهداف و دورنمای بررسی و تحقیق عددی 43
4-5 بررسی استقلال نتایج عددی از مش بندی 44
4-6 بررسی مدل توربولانس 45
4-7 مقایسه نتایج عددی با تجربی و اعتباردهی به نتایج عددی 46
4-8 بررسی قانون دوم ترمودینامیک برای ورتکس تیوب47
  فصل پنجم:بررسی تأثير ابعاد نازلهای تزریق بر عملکرد دستگاه ورتکس تیوب
 
5-1
بررسی تأثیر ارتفاع نازل بر دمای خروجی سرد و گرم دستگاه
49
5-2
مفهوم جریان برگشتی در ورتکس تیوب
53
5-3
بررسی عدد ماخ داخل محفظه چرخش در حالات مختلف ارتفاع نازل
54
5-4
بررسی تناظر بین فشار در محفظه چرخش و دمای خروجی سرد دستگاه
55
5-5
بررسی تأثیر سطح مقطع مستطیلی ورودی نازل بر روی جدایش دمایی سرد دستگاه
58
5-6
توزيع دما و خطوط مسير
60
5-7
بررسی مولفه چرخشی سرعت و ماکزیمم مقدار آن
61
5-8
نرخ توان سرمایشی و گرمایشی
62
5-9
تحلیل عدد ماخ و فشار کل در مدل حالت بهینه و اسکای و همکاران[66]
63
 فصل ششم: نتایج و پیشنهادات
6-1 خلاصه نتایج 66
6-2 پیشنهاد برای کارهای آتی 68
فهرست منابع و مأخذ 69
فهرست جداول
 جدول 2-1: طول و قطر ورتکس تیوبهای استفاده شده در برخی از مقالات 18
جدول 4-1: مشخصات هندسی ورتکس تیوب مدل شده.. 42
جدول 5-1 دمای خروجی سرد برای ارتفاع های مختلف نازلها 50
جدول 5-2 : مقادیر بیشینه فشار در محفظه چرخش و دمای خروجی سرد دستگاه.. 57
جدول 5-3: جدایش دمای خروجی سرد برای نسبت های مختلفη = B/W برای H = 6 m.....59
 
فهرست اشکال
شکل 1-1: نحوه عملکرد و اجزای یک ورتکس تیوب.. 1
شکل 1-2: سطح مقطع ورتکس تیوب طراحی شده توسط رانکیو.. 2
شکل 1-3: ورتکس تیوب مربوط به شرکت Exair. 2
شکل 1-4: شماتیک ورتکس تیوب با جریان مخالف.. 4
شکل 1-5: شماتیک ورتکس تیوب با جریان موازی.. 4
شکل 1-6: شماتیک ورتکس تیوب مخروطی.. 5
شکل 1-7: اجزا تشکیل دهنده ورتکس تیوب به همراه پلان مونتاژ 6
شکل 1-8: یک نمونه از ورتکس تیوب ساخت شرکت ITW Vortec (تفنگ هوای سرد).. 7
شکل 1-9: کابینت کنترلی ساخته شرکت Exair. 8
شکل 1-10: جزئیات خنک کاری یک کابینت کنترلی توسط ورتکس تیوب ساخته­ی شرکت Exair. 8
شکل 1-11: کاربرد ورتکس تیوب در جلیقه­ی هوا .. 9
شکل 1-12: استفاده از ورتکس تیوب بعنوان استخراج و جدا کننده رسوب از یک جریان .. 9
شکل 1-13: استفاده از ورتکس تیوب به عنوان پالاینده و جدا کننده هیدروکربن­های سنگین.. 10
شکل 1-14: استفاده از ورتکس تیوب برای خنک کاری محل جوشکاری اولتراسونیک.. 10
شکل 1-15: نمونه آزمایشگاهی از ورتکس تیوب ساخته شده توسط پورمحمود.. 11
شکل 2-1: جریان ثانویه در ورتکس تیوب.. 17
شکل 2-2: مولفه­های سرعت چرخشی و محوری در z=0/007L و z=0/5L برای کسر دبی­های مختلف.. 20
شکل 2-3: توزیع مولفه­های سرعت محوری برای نسبت­های دبی جرمی مختلف در خروجی سرد.. 20
شکل 3-1: حجم کنترل در نظر گرفته شده برای آنالیز ترمودینامیکی 25
شكل3-2: نتایج حاصل از آناليز ترموديناميكي برای دماي سرد و گرم خروجي به صورت تابعي از کسر جرمی سرد و ضريب فرآيند بازگشت ناپذيري در K300 و bar 6 و bar 1. شماره روي منحني ها مقدار ضريب مي باشد.28
شکل 3-3: مدل چرخش ثانویه (الف) جریان چرخشی درونی و محیطی در ورتکس تیوب (ب) حلقه چرخش ثانویه و محیطی در ورتکس تیوب (شماره های 0 تا 5 موقعیت هایی است که فرایند به صورت فرضی آغاز و اتمام می­یابد.).. 30
شکل 3-4: توزیع سرعت رانکین در محفظه چرخش.. 33
شکل 3-5: رابطه بین نسبت فشار بی بعد و عدد ماخ ....... 36
شکل 4-1: الگوریتم حل تفکیکی بکار گرفته شده در حل معادلات 39
شکل 4-2: پروفیل شبکه ایجاد شده در مدل سه بعدی پریودیک با نمایش میدان محاسباتی مساله.. 41
شکل 4-3: مطالعه استقلال از مش بندی بر مبنای حداکثر جدایش دمایی سرد.. 45
شکل 4-4: مطالعه استقلال از مش بندی بر مبنای حداکثر سرعت چرخشی در محفظه چرخش.. 45
شکل 4-5: دمای گاز در خروجی سرد به ازای مدل های مختلف توربولانس 46
شکل 4-6: دمای گاز در خروجی گرم به ازای مدل های مختلف توربولانس 46
شکل 4-7: جدايش دمايی به دست آمده در خروجی سرد.. 46
شکل 4-8: جدايش دمايی به دست آمده در خروجی گرم.. 46
شکل 4-9: اختلاف آنتروپی ایجاد شده به ازای فشارهای مختلف ورودی به ورتکس تیوب.. 48
شکل 5-1: نمایی از ورتکس تیوب و پارامترهای هندسی نازل آن.............................................................49
شکل 5-2 : نمودار دمای خروجی سرد برحسب ارتفاع نازل برای w = 0.8 mm.. 50
شکل 5-3 : نمودار دمای خروجی سرد برحسب ارتفاع نازل برای w = 0.9 mm.. 50
شکل 5-4 : نمودار دمای خروجی سرد برحسب ارتفاع نازل برای w = 1 mm 50
شکل 5-5 : نمودار دمای خروجی سرد برحسب ارتفاع نازل برای w = 1.2 mm.. 50
شکل 5-6 : نمودار مقایسه جدایش دمایی در α=0.3 برحسب ارتفاع نازل برای عرض های متفاوت نازل در a) خروجی سرد و b) خروجی گرم 51
شکل 5-7: نمودار دمای خروجی سرد برحسب عرض نازل برای ارتفاع نازل 5 میلیمتر.. 52
شکل 5-8: نمودار دمای خروجی سرد برحسب عرض نازل برای ارتفاع نازل 6 میلیمتر.. 52
شکل 5-9: نمودار دمای خروجی سرد برحسب عرض نازل برای ارتفاع نازل 7 میلیمتر.. 52
شکل5-10:کانتورهای دمایی برای حالاتa)حالت بهینهb) بدترین حالت 53
شکل 5-11: نمایش دو بعدیخطوط مسیردر نزدیکی خروجی سرد بر حسب سرعت محوری.. 54
شکل 5-12: طیف دمای کل در مقطعی نزدیک خروجی سرد.. 54
شکل5-13:کانتورهای ماخ برای فاز یک بررسی و حالاتa)حالت بهینهb) حالت میانی c)بدترین حالت.. 55
شکل 5-14 : نمودار تغییرات فشار در راستای شعاعی برای ارتفاع 5 و برای عرض نازل 0.8 و 1.2 میلی متر در محفظه چرخش.. 56
شکل 5-15: نمودار تغییرات فشار در راستای شعاعی برای ارتفاع 6 و برای عرض نازل 0.8 و 1.2 میلی متر در محفظه چرخش.. 56
شکل 5-16: نمودار تغییرات فشار در راستای شعاعی برای ارتفاع H=7 و برای عرض نازل 0.8 و 1.2 میلی متر در محفظه چرخش.. 57
شکل 5-17:(کانتور فشار برای محفظه چرخش برای عرض نازل 0.8 میلیمتر(b کانتورفشار برای محفظه چرخش برای عرض نازل 1.2 میلیمتر 58
شکل 5-18 : نمودار اختلاف دمای خروجی سرد با ورودی دستگاه برحسب η.. 59
شکل 5-19: کانتور دما بر حسب کلوین در مقاطع مختلف ورتکس تیوب برای ورودی 8.34 g/s-160
شکل 5-20: خطوط مسیر برای سیال در ورتکس تیوب بر حسب دمای کل 61
شکل 5-21: مقایسه ی روند تغییرات سرعت چرخشی در راستای شعاعی برای مدل اسکای و همکاران [66] و مدل بهینه در z/L = 0.1. 62
شکل 5-22:نمودار ظرفیت گرمایشی برای W های مختلف به ازای H های متفاوت.. 62
شکل 5-23نمودار ظرفیت سرمایشی برای W های مختلف به ازای H های متفاوت.. 63
شکل 5-24: مقایسه ی روند تغییرات عدد ماخ در راستای شعاعی برای مدل اسکای و همکاران [66] و مدل بهینه در z/L = 0.1. 64
شکل 5-25: مقایسه ی روند تغییرات فشار کل در راستای شعاعی برای مدل اسکای و همکاران [66] و مدل بهینه در z/L = 0.1164
شکل 5-26: مقایسه ی روند تغییرات اختلاف دمای کل در راستای خط مرکزی لوله برای مدل اسکای و همکاران [66] و مدل بهینه بازای z/l های مختلف.. 65
 فصل اول
مقدمه
 ورتکس تیوب یک اختراع ابتکارانه از دو دانشمند به نامهای جورج ژوزف رانکیو و رودولف هیلش می­باشد، که جداگانه این دستگاه را در طول جنگ در دهه 1940 درست کردند.[1] به همین خاطر ورتکس تیوب را به افتخار این دو، رانکیو-هیلش ورتکس تیوب[1] نیز می­نامند.
ورتکس تیوب جریان گاز ورودی به لوله را به دو جریان جداگانه تقسیم می­کند: یکی گرمتر و دیگری سردتر نسبت به ورودی. نکته جالب توجه در مورد این دستگاه، عدم وجود هیچ جزء متحرک، قطعه الکتریکی یا شیمیایی و یا کار ورودی به آن می­باشد. علی­رغم اینکه هندسه ورتکس تیوب ساده می­باشد ولی فرآیند دینامیک سیالات و ترمودینامیک آن بسیار پیچیده می­باشد. تا کنون کارهای آزمایشگاهی، تئوریک و عددی فراوانی برای بررسی پدیده­ی جدایش دما[2] در ورتکس تیوب انجام گرفته است. واضح است که با استفاده از تکنیک دینامیک سیالات محاسباتی[3] می­توان از پیچیدگی­ها و هزینه­های مربوط به کارهای تجربی کاست.
 1-1 رانکيو-هيلش ورتکس تيوب
در قرن نوزدهم فیزیکدان بریتانیایی جیمز ماکسول پیشنهاد داد که یک سیستم با دو خروجی مجزای آب سرد و گرم عبوری از یک لوله می­توان ساخت که با باز و بسته کردن یک شیر کوچک کار کند. شیر باید به طور خودکار زمانیکه یک مولکول از آب گرم به آن می­رسد، باز و هنگامیکه یک مولکول از آب سرد به آن می­رسد، بسته شود.[2] این وسیله خیالی می­توانست به عنوان منبعی جهت دست­یابی به سیال­های سرد و گرم به طور همزمان باشد. این دستگاه که ابتدا با نام لوله جنّی ماکسول نامیده می­شد، یک قرن بعد به واقعیت تبدیل شد و امروزه به نام ورتکس تیوب شناخته می­شود. شکل 1-1 یک طرح شماتیک از این دستگاه را نشان می­دهد که هوای متراکم ورودی را به دو جریان هوای سردتر و گرمتر تقسیم می­کند. جذابیت این وسیله برای محققین همانطور که اشاره شد، عدم استفاده از هر گونه ابزار متحرک و یا کار ورودی به آن می­باشد.
شکل 1-1: نحوه عملکرد و اجزای یک ورتکس تیوب [3]
 همانطورکه اشاره شد در اصل ورتکس تیوب به نام دو دانشمند شناخته می­شود، اولی یک فرانسوی به نام رانکیو که در سال 1933 ورتکس تیوب را کاملاً به طور تصادفی کشف نمود و دوم یک آلمانی به نام رودولف هیلشکه در سال 1946 با انجام کارهای آزمایشگاهی جامع و انتشار مقاله­ای در این زمینه، دستگاه را با موفقیت ساخت و تست نمود. تحقیقات این دو نفر به صورت جزئی­تر در ادامه بحث می­شود.
 1-2 تحقيقات رانکيو
یکی از جامع­ترین مقالات دارای جزئیات مربوط به آنالیز نحوه کشف ورتکس تیوب، توسط فولتن [1] اندکی بعد از کشف آن توسط رانکیو منتشر شد که در آن اشاره به این موضوع شده است که رانکیو دمای سکون[4] را با دمای استاتیک[5] اشتباه گرفت و برای همین ورتکس تیوب ساخته شده توسط وی درست کار نکرد. شکل 1-2 ورتکس تیوب طراحی شده توسط رانکیو[4] را نشان می­دهد.
شکل 1–2: سطح مقطع ورتکس تیوب طراحی شده توسط رانکیو [4]
 ورتکس تیوبهای مدرن امروزی از لحاظ ساختار و نحوه طراحی شبیه آنچه در شکل 1-3 نمایش داده شده است، می­باشد که همراه با نقشه انفجاری آن است. این ورتکس تیوب ساخته­ی شرکت Exair می­باشد.
شکل 1-3: ورتکس تیوب مربوط به شرکت Exair[5]
 نخستین مقاله انتشار یافته در زمینه ورتکس تیوب مربوط به رانکیو در سال 1931 می­باشد. وی در این مقاله نشان داد که ورودی هوا به صورت مماسی و شامل یک یا چند نازل تزریق[6] می­تواند باشد. او همچنین توضیح داد که چگونه می­توان با تنظیم اندازه قطر خروجی سرد یا تغییر مساحت خروجی گرم، به میزان سرمایش مورد نظر رسید. همچنین نتیجه گرفت که اگر خروجی گرم بسته باشد، دمای روی دیواره لوله[7] به بیشترین مقدار خود می­رسد و نیز اینکه با افزایش فشار، دمای خروجی سرد کاهش می­یابد. خلاصه تئوری رانکیو به این صورت است که جریان گاز دارای چرخش در یک ورق ضخیم روی دیواره منبسط می­شود و لایه­های داخلی این ورق روی لایه­های خارجی بوسیله­ی یک نیروی گریز از مرکز فشار می­آورند و آنها را فشرده می­سازند و بنابراین باعث حرارت دادن به آنها می­شوند. در همان زمان لایه­های داخلی منبسط می­شوند و سرد می­گردند و اصطکاک میان لایه­ها نیز به کمترین مقدار خود می­رسد.[4]

👇 تصادفی👇

عجایب جهان حیواناتدانلود طرح توجیهی نشاسته از گندم10 طرح توجیهی در زمینه غذایی، دارویی و بهداشتی بسته دوازدهمدانلود پروژه مدیریت کتابخانه به زبان سی شارپ با قیمت دانشجویی و عالیWriting a Resumeراهنمای قدم به قدم و ساده برای آغاز یادگیری برنامه‌نویسیمرجع کامل تناسب انداممسجد اصفهان ✅فایل های دیگر✅

#️⃣ برچسب های فایل بررسی عددی تأثیر ابعاد هندسی نازلهای تزریق جهت افزایش عملکرد سرمایشی دستگاه ورتکس تیوب word

بررسی عددی تأثیر ابعاد هندسی نازلهای تزریق جهت افزایش عملکرد سرمایشی دستگاه ورتکس تیوب word

دانلود بررسی عددی تأثیر ابعاد هندسی نازلهای تزریق جهت افزایش عملکرد سرمایشی دستگاه ورتکس تیوب word

خرید اینترنتی بررسی عددی تأثیر ابعاد هندسی نازلهای تزریق جهت افزایش عملکرد سرمایشی دستگاه ورتکس تیوب word

👇🏞 تصاویر 🏞